IIIII

lllllllll
llllllllllll
llllllllllll

(3 Droof

= Bring trust into your projects

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

XSURGE

Staking

Audit

Security Assessment
06. May, 2022

UIRGI=

Disclaimer
Description

Project Engagement
Logo

Contract Link
Methodology

Used Code from other Frameworks/Smart Contracts (direct imports)

Tested Contract Files
Source Lines

Risk Level

Capabilities

Inheritance Graph

CallGraph

Scope of Work/Verify Claims
Modifiers and public functions
Source Units in Scope
Critical issues

High issues

Medium issues

Low issues

Informational issues

Audit Comments

SWC Attacks

oo N o o o O W

10
11
12
13
14
17
19
20
20
20
20
21
22
24

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc'..)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Version Date Description

1.0 06. May 2022 - Layout project
- Automated- /Manual-Security Testing
- Summary

http://SolidProof.io

Network
Binance Smart Chain (BEP20)

Website
https://xsurge.net/

Telegram
https://t. me/XSURGEDEF]

Twitter
https://twitter.com/XSURGEDEFI

Facebook
https://www.facebook.com/groups/XSURGEDEFI

Instagram
https://www.instagram.com/XSURGEDEFI/

Reddit
https:/www.reddit.com/r/ XSURGE/

Discord
https://discord.com/invite/XSURGE

https://xsurge.net/
https://t.me/XSURGEDEFI
https://twitter.com/XSURGEDEFI
https://www.facebook.com/groups/XSURGEDEFI
https://www.instagram.com/XSURGEDEFI/
https://www.reddit.com/r/XSURGE/
https://discord.com/invite/XSURGE

Description

Surge is the first of it's kind that only allows for growth. The tokens use
very low fees to raise the price floor with every transaction, whether it be
buys, sells, or wallet-to-wallet transfers

Project Engagement

During the 4th of May 2022, XSURGE Team engaged Solidproof.io to audit
smart contracts that they created. The engagement was technical in
nature and focused on identifying security flaws in the design and
implementation of the contracts. They provided Solidproof.io with access
to their code repository and whitepaper.

Logo

4
XCh ==
: A e N -

Contract Link
v1.0

https://bscscan.com/address/
Ox1Bc2ABdb4190d6006ccf21724508477820A72dC8#code

https://bscscan.com/address/0x1Bc2ABdb4190d6006ccf21724508477820A72dC8#code
https://bscscan.com/address/0x1Bc2ABdb4190d6006ccf21724508477820A72dC8#code

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Medium

4-69

A vulnerability that
can disrupt the
contract functioning
in @ number of
scenarios, or creates a
risk that the contract
may be broken.

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

A vulnerability that
have informational
character but is not
effecting any of the
code.

Immediate action to
reduce risk level.

Implementation of
corrective actions as
soon aspossible.

Implementation of
corrective actionsin a
certain period.

Implementation of
certain corrective
actions or accepting
the risk.

An observation that
does not determine a
level of risk

Auditing Strategy and Techniques
Applied

Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:
1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test
cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

.JOwnable.sol
JIERC20.so0l
.JSafeMath.sol

IFlashBorrower
IFlashLender
IXUSD

Tested Contract Files
This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0

File Name SHA-1 Hash

contracts/’XUSDMAXI.sol = 8f658bf1b6b6cd8598cb1c926e72be1275f6b569
contracts/SafeMath.sol fd31058285c7f9a3a97adb7fe15374ec142de12e
contracts/Ownable.sol 55414df0f430b080f61d60862e617f0e48b7casb5
contracts/IERC20.sol 2b74c3dfeb66efaf46260ae16ed367cdf9ac4500

Metrics

Source Lines
v1.0

I source comment [single block I mixed
N empty I todo blockEmpty

Risk Level
v1.0

=1 overall average

perceivedComplexity
7
compilerVersion 6 size
compilerFeatures numLogicContracts
inlineDocumentation numFiles
interfaceRisk

10

Capabilities

Components

Version Contracts Libraries Interfaces Abstract

1.0 2 1 4 0

Exposed Functions
This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

Version Public Payable
1.0 49 2
Version External Internal Private Pure View
1.0 38 46 2 12 23

State Variables

Version Total Public

1.0 14 8

Capabilities

Has
Solidity Experim Can Uses Destroya
Version Versions ental Receive Assembl ble
observed Features Funds y Contract
s
1.0 0.8.4 yes
Uses EC
i Transfer Low- Deleg Hash Rec New/
Version Level ateCa . Create/
s ETH Function ove
Calls 1l s) Create2

1.0 yes yes

11

Inheritance Graph

v1.0

IFlashLender

12

CallGraph
v1.0

ES)
RS

ofolo]

13

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:
1. Overall checkup (Smart Contract Security)

14

Write functions of contract
v1.0

transfer

transferFrom
setFlashLoanFee
setLeaveEarlyFee
setLeaveEarlyFeeTimer
setBurnAllocation
setResourceAllocation
setFlashFeeExempt
withdrawBNB
recoverfForeignToken
flashLoan

deposit

withdraw

donate &

approve

flashLoan

changeOwner

Overall checkup (Smart Contract Security)

Tested Verified

Legend

Attribute Symbol

Verfified / Checked

Partly Verified

Unverified / Not checked

Not available

16

Modifiers and public functions
v1.0

transfer
transferFrom
setFlashLoanFee

@ onlyOwner
setLeaveEarlyFee

® onlyOwner
setLeaveEarlyFeeTimer

@ onlyOwner
setBurnAllocation

@ onlyOwner
setResourceAllocation

@ onlyOwner
setFlashFeeExempt

® onlyOwner
withdrawBNB

® onlyOwner
recoverForeignToken

® onlyOwner
flashLoan

® nonReentrant
deposit

® nonReentrant
withdraw

® nonReentrant

donate &

® nonReentrant

approve

17

Comments

Deployer can enable/disable following state variables
userinfol[user].isFlashFeeExempt

Modifiers
onlyOwner
nonReentrant

flashLoanFee can be set up to 100
leaveEarlyFeeTimer can be set up to 100

burnAllocation and resourceAllocation must be under 100 in sum
Owner can withdraw contract balance

Please check if an OnlyOwner or similar restrictive modifier has been
forgotten.

18

Source Units in Scope

v1.0
Type File
7% contracts/XUSDMAXI.sol
L =3 contracts/SafeMath.sol
7 contracts/Ownable.sol
Q contracts/IERC20.sol
78 Totals
\‘
Legend
Attribute
Lines
nLines
NSLOC

Comment Lines

Complexity Score

Logic Comment Complex.

Contracts Interfaces Lines nLines nSLOC i -C Score Capabilities
1 3 571 529 326 136 306 Sl
1 145 145 39 93 10 | %
1 51 51 20 24 1
1 80 20 17 54 19
3 4 847 745 402 307 346 & <=8
Description

total lines of the source unit

normalized lines of the source unit (e.g. normalizes functions
spanning multiple lines)

normalized source lines of code (only source-code lines; no
comments, no blank lines)

lines containing single or block comments

a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

19

Audit Results

Critical issues

High issues

Medium issues

Low issues

Issue File Type Line Description
#1 Main Contract doesn't - We recommend to import all
import npm packages packages from npm directly
from source (like without flatten the contract.
OpenZeppelin etc)) Functions could be modified
or can be susceptible to
vulnerabilities
#2 Ownabl Missing Zero Address 39 Check that the address is not
e Validation (missing- zero
zero-check)
#3 Main Missing events 183-184, Emit an event for critical
arithmethic 160-161, parameter changes
175-177,
191-192

Informational issues

Issue

#1

#2

File

Main

Main

Type

Naming convention

NatSpec
documentation
missing

Line

98

Description

Constants variables should
be UPPERCASED and private
constants should start with
an underscore with
UPPERCASED

If you are going to change it,
make sure so change it
everywhere else also

If you started to comment
your code, also comment all
other functions, variables etc.

21

H#3 Main Remove unused
function parameters

Audit Comments

148 You can do the following, if

the parameter is not used in

overridden functions:

e.g. you are not going to use

sender

OLD:
function

transferFrom(address sender,

address recipient, uint256
amount) external override
returns (bool) {
sender;
if (recipient ==
msg.sender) {
withdraw(amount);

}

return true;

}

NEW:
function
transferFrom(address,
address recipient, uint256
amount) external override
returns (bool) {
if (recipient ==

msg.sender) {

withdraw(amount);

}

return true;

}

Just remove the parameter

variable (marked as red) and

leave the tope there if you

are not going to use it in your

function

We recommend you to use the special form of comments (NatSpec
Format, Follow link for more information https://docs.soliditylang.org/en/
v0.5.10/natspec-format.html) for your contracts to provide rich
documentation for functions, return variables and more. This helps
investors to make clear what that variables, functions etc. do.

22

https://docs.soliditylang.org/en/v0.5.10/natspec-format.html
https://docs.soliditylang.org/en/v0.5.10/natspec-format.html

06. May 2022:

Read whole report carefully for more information

23

SWC Attacks

ID

0
=

3

B &

‘m
=

I

‘m
=

s

n
=

O

HRE K]

‘m
=

6L

n
=

3

BRE R

Title

Unencrypted
Private Data
On-Chain

Code With No
Effects

Message call
with
hardcoded
gas amount

Hash
Collisions With
Multiple
Variable
Length
Arguments

Unexpected
Ether balance

Presence of
unused
variables

Right-To-Left-
Override
control
character
(U+202E)

Typographical
Error

DoS With
Block Gas
Limit

Relationships

CWE-767: Access to Critical
Private Variable via Public
Method

CWE-1164: Irrelevant Code

CWE-655: Improper
Initialization

CWE-294: Authentication
Bypass by Capture-replay

CWE-667: Improper Locking

CWE-1164: Irrelevant Code

CWE-451: User Interface (Ul)
Misrepresentation of Critical

Information

CWE-480: Use of Incorrect
Operator

CWE-400: Uncontrolled
Resource Consumption

Status

24

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

‘m
=

N

=

s

‘m
=

R [2

0
=

O

RRE R

‘m
=

STe

‘m
=

oL

0 |ooQ‘m m‘(p‘m
‘E ‘:5 LS

N ‘(‘)
1

Arbitrary
Jump with
Function Type
Variable

Incorrect
Inheritance
Order

Write to
Arbitrary
Storage
Location

Requirement
Violation

Lack of Proper
Signature
Verification

Missing
Protection
against
Signature
Replay Attacks

Weak Sources
of
Randomness
from Chain
Attributes

Shadowing
State Variables

Incorrect
Constructor
Name

Signature
Malleability

CWE-695: Use of Low-Level
Functionality

CWE-696: Incorrect Behavior
Order

CWE-123: Write-what-where
Condition

CWE-573: Improper Following
of Specification by Caller

CWE-345: Insufficient
Verification of Data
Authenticity

CWE-347: Improper
Verification of Cryptographic

Signature

CWE-330: Use of Insufficiently
Random Values

CWE-710: Improper Adherence

to Coding Standards

CWE-665: Improper
Initialization

CWE-347: Improper
Verification of Cryptographic

Signature

25

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

[¥a] [ON'e) ‘U)
‘5 ‘: s

[€p ‘O
1

‘m
=

IS ‘Q

[¥a] N O ‘U)
‘5 ‘: s

N ‘O
1

=

I—‘O
a
—

wn o 10 |\
2 PLE

8 [2

=

& 2

‘m
=

RE

‘m
=

82

Timestamp
Dependence

Authorization
through
tx.origin

Transaction
Order
Dependence

DoS with
Failed Call

Delegatecall
to Untrusted
Callee

Use of
Deprecated
Solidity
Functions

Assert
Violation

Uninitialized
Storage
Pointer

State Variable
Default
Visibility

Reentrancy

Unprotected
SELFDESTRUC
T Instruction

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race

Condition')

CWE-703: Improper Check or
Handling of Exceptional
Conditions

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-670: Always-Incorrect
Control Flow Implementation

CWE-824: Access of
Uninitialized Pointer

CWE-710: Improper Adherence
to Coding Standards

CWE-841: Improper
Enforcement of Behavioral
Workflow

CWE-284. Improper Access
Control

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

=

3

n
=

O

geE K|

‘m
=

B

=

El

‘m
=

|O |(')
O |4

Unprotected
Ether
Withdrawal

Unchecked
Call Return
Value

Floating
Pragma

Outdated
Compiler
Version

Integer
Overflow and
Underflow

Function
Default
Visibility

CWE-284. Improper Access
Control

CWE-252: Unchecked Return
Value

CWE-664: Improper Control of
a Resource Through its
Lifetime

CWE-937: Using Components
with Known Vulnerabilities

CWE-682: Incorrect
Calculation

CWE-710: Improper Adherence

to Coding Standards

27

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Inheritance Graph
	CallGraph
	Scope of Work/Verify Claims
	Modifiers and public functions
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Audit Comments
	SWC Attacks

