IIIII

(3 Droof

= Bring trust into your projects

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

XSURGE

Audit

Security Assessment
29. March, 2022

UIRGI=

Disclaimer
Description

Project Engagement
Logo

Contract Link
Methodology

Used Code from other Frameworks/Smart Contracts (direct imports)

Tested Contract Files
Source Lines

Risk Level

Capabilities

Inheritance Graph

CallGraph

Scope of Work/Verify Claims
Modifiers and public functions
Source Units in Scope
Critical issues

High issues

Medium issues

Low issues

Informational issues

Audit Comments

SWC Attacks

oo N o o o O W

10
11
12
13
14
17
22
24
24
24
24
25
25
26

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc'..)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Version Date Description

1.0 19. March 2022 - Layout project
- Automated- /Manual-Security Testing
- Summary

1.1 29. March 2022 - Reaudit

http://SolidProof.io

Network
Binance Smart Chain (BEP20)

Website
https://xsurge.net/

Telegram
https://t. me/XSURGEDEF]

Twitter
https://twitter.com/XSURGEDEFI

Facebook
https://www.facebook.com/groups/XSURGEDEFI

Instagram
https://www.instagram.com/XSURGEDEFI/

Reddit
https:/www.reddit.com/r/ XSURGE/

Discord
https://discord.com/invite/XSURGE

https://xsurge.net/
https://t.me/XSURGEDEFI
https://twitter.com/XSURGEDEFI
https://www.facebook.com/groups/XSURGEDEFI
https://www.instagram.com/XSURGEDEFI/
https://www.reddit.com/r/XSURGE/
https://discord.com/invite/XSURGE

Description

Surge is the first of it's kind that only allows for growth. The tokens use
very low fees to raise the price floor with every transaction, whether it be
buys, sells, or wallet-to-wallet transfers

Project Engagement

During the 19th of March 2022, XSURGE Team engaged Solidproof.io to
audit smart contracts that they created. The engagement was technical
in nature and focused on identifying security flaws in the design and
implementation of the contracts. They provided Solidproof.io with access
to their code repository and whitepaper.

Logo

4
XCh ==
: A e N -

Contract Link
v1.0

Provided as files

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Medium

4-69

A vulnerability that
can disrupt the
contract functioning
in @ number of
scenarios, or creates a
risk that the contract
may be broken.

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

A vulnerability that
have informational
character but is not
effecting any of the
code.

Immediate action to
reduce risk level.

Implementation of
corrective actions as
soon aspossible.

Implementation of
corrective actionsin a
certain period.

Implementation of
certain corrective
actions or accepting
the risk.

An observation that
does not determine a
level of risk

Auditing Strategy and Techniques
Applied

Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:
1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test
cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

v @® lib

Address.sol
IERC20.so0l
IlUniswapV2Router02.sol
Ownable.sol
ReentrantGuard.sol
SafeMath.sol
SwapHelper.sol

FlashLoanProvider.sol

IERC3156FlashBorrower.sol

IERC3156FlashLender.sol

IStableSwapRouter.sol

IXSurge.sol

Migration.sol
Migrations.sol
NewTokenProposal.sol
PromiseUSD.sol
ResourceCollector.sol
TokenFetcher.sol
xSwap.sol

XUSDV2.sol

Tested Contract Files
This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0

File Name SHA-1 Hash

contracts/IERC3156FlashLender.sol 6fe140a50b566af15240c67b369eb1f28df2291¢c

contracts/IStableSwapRouter.sol ec45d4c4c340c220902aa526bdb3eaadc1827797

contracts/XUSDV2.sol 54104d577dfb15239237256c97506c0b089f753a

contracts/PromiseUSD.sol eb1affcc8b9af7c1a239fab272419ee6110e8ada

contracts/xSwap.sol 7946ffe8dab12dbbb9f5c226452cc2ad4deed09a

contracts/TokenFetcher.sol 39537e173fc21f055¢ca544875b47f294d532185¢

contracts/NewTokenProposal.sol 5a1277¢25521223e9f802b03827609844f841a9a

contracts/IXSurge.sol 1f619a8fd54af543e7d6d3c4db952ed7d4713348

contracts/IERC3156FlashBorrower.sol =~ 2731967fc9e337a8bbbd584458d4889f88b58888

\VAR

File Name
contracts/ResourceCollector.sol
contracts/IStableSwapRouter.sol
contracts/PromiseUSD.sol
contracts/xSwap.sol
contracts/IFlashLender.sol
contracts/IFlashBorrower.sol
contracts/TokenFetcher.sol
contracts/NewTokenProposal.sol
contracts/IXSurge.sol
contracts/IERC3156FlashBorrower.sol

contracts/FlashLoanProvider.sol

SHA-1 Hash
baf77cd4de7816efad944073010e04f12e72164b
a8c08893362d0cf03e9bef7de0f4e758e12e4b40
70c28d47244fc3cf8b12d0ee5388de95d8815bb9
85c6214c5e7b8aba0ed001d3cbdd4e3eda8c03a7
0ea163740b2002aa54089ff4d92795cb7bf10f33
bf2f942e1efb3ee2bdf0826747a7e3c7a87059ac
232e2e7145c263a6e7b79dc6al1e9¢c37f00dca075
940d96838b6df390425e2af503870c31620d93af
595c0898952695f91168eeb8e97931a506a5a54d
2731967fc9e337a8bbbd584458d4889f88b58888
7a3ad64b2f97f6d2870c164ee84ceb56a6190c73

Metrics

Source Lines
v1.0

I source comment [single block I mixed
N empty I todo blockEmpty

-9

Risk Level
v1.0

=1 overall average

perceivedComplexity
7.
compilerVersion size
compilerFeatures numLogicContracts
inlineDocumentation numFiles
interfaceRisk

10

Capabilities

Components

Version Contracts Libraries Interfaces

1.0 5 0 10

Exposed Functions

Abstract

This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

Version Public Payable
1.0 109 5
Version External Internal Private Pure
1.0 92 118 4 7

State Variables

Version Total Public

1.0 52 36

Capabilities

Solidity Experim Can Uses
Version Versions ental Receive Assembl
observed Features Funds y
1.0 0.8.4 yes
Low- Dele Uses EC
\ Transfer 9 Hash Rec
Version Level ateCa .
s ETH Function ove
Calls Il s ;

1.0 yes

View

27

Has
Destroya
ble
Contract
s

New/
Create/
Create2

11

Inheritance Graph
v1.0

IERC3156FlashLender @ XUSD ILoanProvider < NewTokenProposal IERC3 156FlashBorrower
IStableSwapRouter @

12

CallGraph

v1.0

=

13

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:
1. Overall checkup (Smart Contract Security)

14

Write functions of contract

v1.0

approvePendingStable

changeOwnership
pairXUsSD

proposeStable

approve
burnCollateral
makePayment
mint
pairXuUsD
setApprovedContract
setNonce
takeLoan
takeLoan

transfer

migrate
pairXUSDV2

setTaxFreeAmounts

addXToken

changeOperator

exchange

exchange

exchange

exchange

removeXToken

restrictTokenAccess

setFeeRank

setRates

unRestrictTokenAccess

balanceToStable

bnbToStable

bumXUSD

addResource

bnbToToken

changeOwner

changeResourcePoints

deliver

deliverSellableTokens

deliverToken

removeResource

sellAllAndDeliver

sellAndDeliver

sellXUSD

tokenToBNB

sellSurge

sellXUSDAndDeliver

changeOwner

flashLoan

fulfillFlashLoanRequest

setFeeRank

setXUSD

approve
burn
changeOwner
disableMintForStable
exchange
mintWithBacking
mintWithBacking
mintWithNative
redeemForLostAccount
removeStable
requestFlashLoan

requestPromiseTokens

setApprovedPromiseUSD...

setFees
setPermissions
transfer
transferFrom
upgradeFlashLoanProvider
upgradeResourceCollector
upgradeTokenFetcher

upgradeXSwapRouter

withdrawNonStableToken

Overall checkup (Smart Contract Security)

Tested Verified

Legend

Attribute Symbol

Verfified / Checked

Partly Verified

Unverified / Not checked

Not available

16

Modifiers and public functions

v1.0

FlashLoanProvider

setXUSD

@ onlyOwner

setFeeRank
@ onlyOwner
flashLoan

fulfillFlashLoanRequest

changeOwner

@ onlyOwner
Migration

pairXUSDV2
@ onlyOwner
setlaxFreeAmounts
@ onlyOwner

migrate

NewTokenProposal

approvePendingStable
@ onlyOwner
proposeStable
@ onlyOwner
pairXUSD

@ onlyOwner

changeOwnership

@ onlyOwner

PromiseUSD

approve
transfer
transferFrom
pairXUSD
setApprovedContract
@ onlyXUSD
burnCollateral
® onlyApproved

makePayment

@ onlyApproved

takelLoan

® onlyApproved
setNonce

® onlyApproved
mint

® onlyXUSD

17

ResourceCollector TokenFetcher

tokenToBNB
@ onlyOwner
bnbToToken

@ onlyOwner

bnbToStable &
balanceToStable

withdraw
burnXUSD

deliver
@ onlyOwner
sellAndDeliver
@ onlyOwner xSwap
sellXUSDAndDeliver
® onlyOwner
sellAllAndDeliver

® onlyOwner

changeOperator
@ onlyOperator
setRates

deliverToken

@ onlyOperator
LR addXToken
deliverSellableTok
eliverSellableTokens @ onlyOperator
@ onlyOwner
sellXUSD

® onlyOwner

setFeeRank
@ onlyOperator

sellSurge removeXToken

@ onlyOwner

@ onlyOperator

changeResourcePoints

restrictlokenAccess
@ onlyOwner

@ onlyOperator

addResource

@ onlyOwner unRestrictTokenAccess

removeResource ® onlyOperator

onlyOwner
Gy exchange

XUSDV2

approve

transfer

@ notEntered
transferFrom

@ notEntered
mintWithNative &

@ notEntered
mintWithBacking

@ notEntered
sell

@ notEntered
exchange

@ notEntered
burn

@ notEntered
requestPromiseTokens

@ nonReentrant
requestFlashLoan

@ nonReentrant
upgradeFlashLoanProvider

@ onlyOwner
upgradeTokenFetcher

@ onlyOwner
upgradeXSwapRouter

@ onlyOwner
upgradeResourceCollector

@ onlyOwner
disableMintForStable

@ onlyOwner
addStable
removeStable

@ nonReentrant

@ onlyOwner
withdrawNonStableToken

@ onlyOwner
redeemForLostAccount

@ onlyOwner
setFees

@ onlyOwner
setPermissions

@ onlyOwner
setApprovedPromiseUSDContract

@ onlyOwner

Comments
- Deployer can set following state variables without any limitations
Migration.sol
taxFreeAmount
ResourceCollector
receivers[resource].points
XUSDV2
resourceAllocationPercentage

- Deployer can enable/disable following state variables
xSwap

tokenDeniedFromSwap[token]
XUSDVZ2

stableAssets[stable].mintDisabled

isTransferFeeExempt[Contract]

Deployer can set following addresses
FlashlLoanProvider.sol
XUSD
Only once if address is zero address and the new
address isn't
NewTokenProposal
pendingStableToken
XUSD
Only once if address is zero address and the new
address isn't
owner
PromiseUSD
XUSD
Only once if address is zero address and the new
address isn't
nonces[msg.sender]
xSwap
operator
xTokens[xtoken].resourceCollector
XUSDV2
flashLoanProvider
TokenFetcher
xSwapRouter
resourceCollector

FlashloanProvider

If feeRank is 2 from address, the calculated flash fee will be every

time zero in L101
Migration

XUSDV can only be paired once
PromiseUSD

Only XUSD can mint new tokens
ResourceCollector

Owner can send token to bnb
XUSDV2

Anybody can

Burn

20

Mint
Fees are set to 0.75% by default but can be set to 2% with setFees
function
Owner can disable minting

Please check if an OnlyOwner or similar restrictive modifier has been
forgotten.

21

Source Units in Scope

v1.0

Interfaces

10

Interfaces

2

1

15

Lines

35

20

965

245

57

73

21

21

1818

Lines

265

25

382

267

37

23

89

86

23

21

251

1469

nLines

12

9

945

355

237

54

70

1"

14

1707

nLines

253

356

238

199

1262

total lines of the source unit

nSLOC

518

172

169

39

45

957

nSLOC

171

3

173

170

60

46

130

767

Comment Complex.
Lines Score
19 7
10 7
291 483
149 148
23 106
3 50
10 38
5 26
10 3
520 868
C Lines Complex. Score
26 239
13 9
149 148
35 125
20 7
1 3
6 74
10 57
5 30
10 3
53 127
338 822

Capabilities

‘o

‘o

&

Capabilities

*
-

q

&S

normalized lines of the source unit (e.g. normalizes functions
spanning multiple lines)

normalized source lines of code (only source-code lines; no

. Logic
Type File Contracts
Q contracts/IERC3156FlashLender.sol
Q contracts/IStableSwapRouter.sol
7 contracts/XUSDV2.sol 1
Q
,/ contracts/PromiseUSD.sol 1
Q
7 contracts/xSwap.sol 1
‘,j contracts/TokenFetcher.sol 1
Q
,'/ contracts/NewTokenProposal.sol 1
Q
Q contracts/IXSurge.sol
Q contracts/IERC3156FlashBorrower.sol
‘,/ Totals 5
Q
\AR
Type File Logic Contracts
2 | contracts/ResourceCollector.sol 2
Q contracts/IStableSwapRouter.sol
2& | contracts/PromiseUSD.sol 1
2& | contracts/xSwap.sol 1
Q contracts/IFlashLender.sol
Q contracts/IFlashBorrower.sol
2 | contracts/TokenFetcher.sol 1
2 | contracts/NewTokenProposal.sol 1
Q contracts/IXSurge.sol
Q contracts/IERC3156FlashBorrower.sol
2 | contracts/FlashLoanProvider.sol 1
24 | Totals 7
Legend
Attribute Description
Lines
nLines
NSLOC

comments, no blank lines)

22

Comment Lines

Complexity Score

lines containing single or block comments

a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

23

Audit Results

AUDIT PASSED

Critical issues

No critical issues

High issues

No high issues

Medium issues

No medium issues

Low issues

Issue

#1

#2

#3

#4

#5

File

Main

NewTok
enProp
osal

Ownabl
e

Resourc
eCollect
or

XUSDV2

Type Line

Contract doesn't -
import npm packages
from source (like
OpenZeppelin etc.)

Missing Zero Address
Validation (missing-
zero-check)

Missing Zero Address
Validation (missing-
zero-check)

Missing Zero Address 18, 122
Validation (missing-
zero-check)

Missing Zero Address
Validation (missing-
zero-check)

83

39

773

Description

We recommend to import all
packages from npm directly
without flatten the contract.
Functions could be modified
or can be susceptible to
vulnerabilities

Check that the address is not
zero

Check that the address is not
zero.

Check that the address is not
zero

Check that the address is not
zero

24

#6

XUSDV2

State variable visibility
is not set

Informational issues

Issue

#1

#2

#3

#H

#5

File

Migratio
n

Migratio
n

Main

Reource
Collecto
;

XUSDV2

Type

State variables that
could be declared
constant (constable-
states)

Unused state variables

NatSpec
documentation
missing

Require message
missing

Require message
missing

Audit Comments
We recommend you to use the special form of comments (NatSpec
Format, Follow link for more information https://docs.soliditylang.org/en/
v0.5.10/natspec-format.html) for your contracts to provide rich

4 47, 48

Line

24

24

184

All require
statements

It is best practice to set the
visibility of state variables
explicitly

Description

Add the ~constant”
attributes to state variables
that never change

Remove unused state
variables

If you started to comment
your code, also comment all
other functions, variables etc.

Provide an error message

Provide an error message

documentation for functions, return variables and more. This helps
investors to make clear what that variables, functions etc. do.

19. March 2022:

Read whole report carefully for more information

29. March 2022:

Several bugs were fixed by Surge team
Read whole report carefully for more information

25

https://docs.soliditylang.org/en/v0.5.10/natspec-format.html
https://docs.soliditylang.org/en/v0.5.10/natspec-format.html

SWC Attacks

ID

n
=

3

B &

‘m
=

I

‘m
=

s

n
=

O

HRE K]

‘m
=

6L

‘m
=

(& [

‘m
=

e [

Title

Unencrypted
Private Data
On-Chain

Code With No
Effects

Message call
with
hardcoded
gas amount

Hash
Collisions With
Multiple
Variable
Length
Arguments

Unexpected
Ether balance

Presence of
unused
variables

Right-To-Left-
Override
control
character
(U+202E)

Typographical
Error

DoS With
Block Gas
Limit

Relationships

CWE-767: Access to Critical
Private Variable via Public
Method

CWE-1164: Irrelevant Code

CWE-655: Improper
Initialization

CWE-294: Authentication
Bypass by Capture-replay

CWE-667: Improper Locking

CWE-1164: Irrelevant Code

CWE-451: User Interface (Ul)
Misrepresentation of Critical

Information

CWE-480: Use of Incorrect
Operator

CWE-400: Uncontrolled
Resource Consumption

Status

26

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

‘m
=

N

=

s

‘m
=

R [2

0
=

O

RRE R

‘m
=

STe

‘m
=

oL

0 |ooQ‘m m‘(p‘m
‘E ‘:5 LS

N ‘(‘)
1

Arbitrary
Jump with
Function Type
Variable

Incorrect
Inheritance
Order

Write to
Arbitrary
Storage
Location

Requirement
Violation

Lack of Proper
Signature
Verification

Missing
Protection
against
Signature
Replay Attacks

Weak Sources
of
Randomness
from Chain
Attributes

Shadowing
State Variables

Incorrect
Constructor
Name

Signature
Malleability

CWE-695: Use of Low-Level
Functionality

CWE-696: Incorrect Behavior
Order

CWE-123: Write-what-where
Condition

CWE-573: Improper Following
of Specification by Caller

CWE-345: Insufficient
Verification of Data
Authenticity

CWE-347: Improper
Verification of Cryptographic

Signature

CWE-330: Use of Insufficiently
Random Values

CWE-710: Improper Adherence

to Coding Standards

CWE-665: Improper
Initialization

CWE-347: Improper
Verification of Cryptographic

Signature

27

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

[¥a] [ON'e) ‘U)
‘5 ‘: s

[€p ‘O
1

‘m
=

IS ‘Q

[¥a] N O ‘U)
‘5 ‘: s

N ‘O
1

=

I—‘O
a
—

wn o 10 |\
2 PLE

8 [2

=

& 2

‘m
=

RE

‘m
=

82

Timestamp
Dependence

Authorization
through
tx.origin

Transaction
Order
Dependence

DoS with
Failed Call

Delegatecall
to Untrusted
Callee

Use of
Deprecated
Solidity
Functions

Assert
Violation

Uninitialized
Storage
Pointer

State Variable
Default
Visibility

Reentrancy

Unprotected
SELFDESTRUC
T Instruction

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race

Condition')

CWE-703: Improper Check or
Handling of Exceptional
Conditions

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-670: Always-Incorrect
Control Flow Implementation

CWE-824: Access of
Uninitialized Pointer

CWE-710: Improper Adherence
to Coding Standards

CWE-841: Improper
Enforcement of Behavioral
Workflow

CWE-284. Improper Access
Control

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

=

3

n
=

O

geE K|

‘m
=

B

=

El

‘m
=

|O |(')
O |4

Unprotected
Ether
Withdrawal

Unchecked
Call Return
Value

Floating
Pragma

Outdated
Compiler
Version

Integer
Overflow and
Underflow

Function
Default
Visibility

CWE-284. Improper Access
Control

CWE-252: Unchecked Return
Value

CWE-664: Improper Control of
a Resource Through its
Lifetime

CWE-937: Using Components
with Known Vulnerabilities

CWE-682: Incorrect
Calculation

CWE-710: Improper Adherence

to Coding Standards

29

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Inheritance Graph
	CallGraph
	Scope of Work/Verify Claims
	Modifiers and public functions
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Audit Comments
	SWC Attacks

